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1 Introduction

The recent surge of interest in lattice calculations of the excited baryon spectrum [1–19]

has been mainly motivated by the experimental resonance physics program at Jefferson

Lab [20] and ELSA [21]. Also, the hadron spectrum is arguably the least understood

feature of Quantum Chromodynamics. In general, the extraction of the properties of the

excited states from the lattice data is a more delicate enterprise as compared to the ground-

state hadrons. The reason is that the excited states are unstable and, strictly speaking, can

not be put in correspondence to a single isolated level in the discrete spectrum measured

in lattice simulations. A standard procedure proposed by Lüscher [22–25] (see also [26–

30]) consists in placing the system into a finite cubic box of a size L and studying the

response of the spectrum on the change of L. It can be shown that the dependence of the

energy levels on L is dictated solely by the scattering phase shift in the infinite volume.

Consequently, the method is capable of extracting the phase shift from the lattice data

that also determines the position and the width of the resonances (see, e.g. [19, 31, 32]).

Recently, the above approach has been also applied to study nucleon-nucleon phase shifts

at low energy, as well as the two-body shallow bound states [33–37].
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Alternative approaches to study the decaying states have been suggested, see, e.g. [38–

40]. In particular, an interesting proposal is to reconstruct the spectral function by using

the maximal entropy method [41], which can also be used to address the problem of un-

stable systems.

In actual calculations on the lattice the quark masses do not usually coincide with

physical quark masses. This qualitatively changes the picture since, if the quark mass is

large enough, the ∆(1232) does not decay and can be extracted by the methods appli-

cable in case of the stable particles. Reducing the quark mass, a value is reached such

that the ∆ starts to decay into a pion and a nucleon.1 The spectrum becomes strongly

volume-dependent and Lüscher’s method has to be applied to extract the parameters of

the resonance — the mass and the width.

Above the threshold MN +Mπ > M∆, the finite-volume corrections to the spectrum

are exponentially suppressed and can be neglected in the first approximation. However,

for those values of the quark masses which correspond to MN +Mπ < M∆, finite-volume

corrections may become large and should be taken into account. Note that merely making

the volume larger does not suffice in the case of an unstable state. Due to the potentially

large corrections, the finite volume data on the finite-volume energy spectrum can be

enhanced below threshold. This enhancement, which is visible in the lattice data at smaller

volumes, can not be described by using the formulae for the quark mass dependence in the

infinite volume. We shall demonstrate an explicit example of such a behavior below.

From the above discussion it is clear that, in order to be able to include all available

lattice data for large as well as small quark masses in the analysis, one needs to provide a

simultaneous explicit parameterization of the lattice QCD spectrum in terms of both the

quark mass m̂ and the box size L. This goal can be achieved by invoking the chiral effective

field theory with explicit spin-3/2 degrees of freedom [42, 43] in a finite volume. The first

attempt in this direction was made in ref. [44], where we have performed the calculations

of the finite-volume energy spectrum at third order in the so-called small scale expansion

(SSE). The present paper extends these calculations to the fourth order. In addition,

(i) We provide an explicit formula for the finite-volume corrections for the unstable ∆,

which can be used in the analysis of the lattice data;

(ii) We perform a fit of the obtained expressions to the most recent available data at

different quark masses, taking into account finite-volume corrections. The fit allows

one to determine some of the low-energy constants (LECs) in the chiral Lagrangian;

(iii) In doing so, one does not need to resort to any input phenomenological parame-

terization of the resonant amplitude, because SSE provides such a parameterization

automatically, order by order in the ǫ-expansion (here, ǫ denotes the formal small

expansion parameter in the SSE).

1Of course, the decay threshold is located at MN + Mπ = M∆ only in the infinite volume. However,

the asymptotic dependence on L of the finite-volume correction to a given energy level with the quantum

numbers of ∆ changes from exponential to power-law, if the energy moves across MN + Mπ. Thus, the

infinite-volume threshold defines the qualitative behavior of the finite-volume corrections, even if the ∆

itself is still stable in a finite volume at MN + Mπ = M∆.
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(iv) We analyze the quark mass dependence of the spectrum by using the method of

probability distribution, introduced in [45].

Note also that in this paper we do not consider the finite-volume effects in the stable

particle masses, which are exponentially suppressed at large volumes. Such effects can be

treated within the same approach, see, e.g. ref. [46].

The layout of the paper is as follows. In section 2 we discuss the calculation of the

mass of the nucleon and the ∆ in the infinite volume, at fourth order in the small scale

expansion. In section 3 the calculation of the finite-volume energy spectrum of the πN

system is addressed. In section 4 we consider the fit of the explicit analytic expressions for

the nucleon and ∆ mass to the existing data from lattice QCD and determine some of the

LECs of the chiral Lagrangian. We also analyze the finite volume spectrum with the use

of probability distributions [45]. Finally, section 5 contains our conclusions.

2 The mass of the nucleon and the ∆ resonance in the infinite volume

Our calculations will be carried out in two steps. We first perform calculations of the

nucleon and ∆ mass at order ǫ4 in the infinite volume.2 At the second step, we use the

same Lagrangian in order to carry out the calculations of the finite-volume energy spectrum.

The results of these calculations are applied to the case of an unstable ∆.

The Lagrangian of pions, nucleons and deltas up-to-and-including order ǫ4 in the SSE

is taken from ref. [47]. Below we display only those terms that contribute to the nucleon

and ∆ mass at this order,

L =
4

∑

i=1

(

L(i)
πN + L(i)

π∆

)

+
2

∑

i=1

L(i)
πN∆ , (2.1)

where the pion-nucleon Lagrangians are given by

L(1)
πN = ψ̄N

[

i /D − m̊N +
gA

2
/uγ5

]

ψN ,

L(2)
πN = ψ̄N

[

c1〈χ+〉 −
c2

4m̊2
N

(〈uµuν〉DµDν + h.c.) +
c3
2
〈u2〉 + . . .

]

ψN ,

L(3)
πN = ψ̄N

[

B23∆0〈χ+〉 +B32∆
3
0 + . . .

]

ψN ,

L(4)
πN = ψ̄N

[

e38〈χ+〉2 +
1

4
e115〈χ2

+ − χ2
−〉 −

1

4
e116

[

〈χ2
−〉 − 〈χ−〉2 + 〈χ2

+〉 − 〈χ+〉2
]

+E1∆
4
0 + E2∆

2
0〈χ+〉 + . . .

]

ψN , (2.2)

2The small parameter ǫ subsumes external momenta, the pion mass and the nucleon-delta mass splitting.

– 3 –



J
H
E
P
0
6
(
2
0
0
9
)
0
6
1

and

L(1)
π∆ = −ψ̄i

αO
αµ

{[

i /D
ij − m̊∆ξ

ij
3/2 +

g1
2
/uijγ5

]

gµν − 1

4

[

γµγν ,
(

i /D
ij − m̊∆ξ

ij
3/2

)]

}

Oνβψj
β ,

L(2)
π∆ = −ψ̄i

αO
αµ

{[

a1〈χ+〉δij − a2

4m̊2
∆

(

〈uρuσ〉Dρ
ikD

σ
kj + h.c.

)

+
a3

2
〈u2〉δij + . . .

]

gµν + . . .

}

Oνβψj
β , (2.3)

L(3)
π∆ = −ψ̄i

αO
αµ

[

B∆
1 ∆0〈χ+〉 +B∆

0 ∆3
0 + . . .

]

gµνδ
ijOνβψj

β ,

L(4)
π∆ = −ψ̄i

αO
αµ

[

e∆38〈χ+〉2 +
1

4
e∆115〈χ2

+ − χ2
−〉 −

1

4
e∆116

[

〈χ2
−〉 − 〈χ−〉2 + 〈χ2

+〉 − 〈χ+〉2
]

+E∆
1 ∆4

0 + E∆
2 ∆2

0〈χ+〉 + . . .

]

gµνδ
ijOνβψj

β . (2.4)

The πN∆ interaction is described by the following Lagrangians

L(1)
πN∆ = cAψ̄

i
αO

αβwi
βψN + h.c. ,

L(2)
πN∆ = ψ̄i

αO
αµ

[

ib3w
i
µνγ

ν + i
b6
m̊N

wi
µνiD

ν + . . .

]

ψN + h.c. . (2.5)

In the above expressions, ψN and ψi
µ denote the nucleon and the ∆ field, respectively,

m̊N and m̊∆ stand for their masses in the chiral limit and ∆0 = m̊∆ − m̊N . Note that

Mπ = O(ǫ) and ∆0 = O(ǫ). The building blocks that are used in the construction of the

above Lagrangian are given by

U = u2 , uµ = iu†∂µUu
† , Dµ = ∂µ +

1

2
[u†, ∂µu] ,

χ = 2B(s+ ip) , χ± = u†χu† ± uχ†u , s = m̂1 + . . . ,

Dµ
ij = δijD

µ − iǫijk〈τkDµ〉 , uij = δiju
µ , wi

µ =
1

2
〈τ iuµ〉 .

wi
µν = 〈τ i[Dµ, uν ]〉/2 , Oµν = gµν − 2

d
γµγν , (2.6)

and the isospin projectors are defined by

ξ
3/2
ij = δij −

1

3
τiτj , ξ

1/2
ij =

1

3
τiτj . (2.7)

In these formulae standard notation is utilized. Namely, we use U = exp(iτ · π/F ), where

π is the pion field. We work in the isospin limit mu = md = m̂ and the trace in flavor

space is denoted by 〈. . .〉. The quantity F is the pion decay constant, B is related to the

quark condensate and gA is the nucleon axial-vector constant (all in the chiral limit). The

coefficients ci, ai, · · · are the pertinent LECs.

The propagator of a Rarita-Schwinger field in d dimensions is given by

S(0)
µν = − 1

m̊∆ − /p

[

gµν − 1

d− 1
γµγν − d− 2

(d− 1)(m̊∆)2
pµpν +

pµγν − pνγµ

(d− 1)m̊∆

]

ξ
3/2
ij . (2.8)
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Figure 1. Graphs contributing to the nucleon self-energy at O(ǫ4) in SSE. Solid, double solid and

dashed lines denote nucleons, deltas and pions, in order.

The calculations are carried out in infrared regularization. Differently from ref. [47, 48], we

do not project out the redundant spin-1/2 components of the ∆ propagator, which appears

in the loops. This amounts merely to a redefinition of some of the LECs — hence, the

numerical values of LECs determined from fitting to the same data, should in general differ

in these two schemes. For related discussion of this issue, see also [49–53].

The self-energy of the ∆ is complex on the mass shell for those values of the pion

masses, when the ∆ turns unstable, i.e., Mπ < M∆ −MN . The mass of the ∆ is defined

as a real part of the pole position in the propagator.

The diagrams that contribute to the nucleon and ∆ masses at order ǫ4, are displayed

in figure 1 and figure 2, respectively. The calculations are pretty standard and the final

results are listed in appendix A. Since we are primarily interested in fitting the quark mass

dependence to lattice data, it is useful to normalize both quantities at the physical value

of the quark (pion) mass

MN = M̄N + x1(M
2
π−M̄2

π) + x2(M
3
π−M̄3

π) + x3(M
4
π−M̄4

π) + x4

(

M4
π ln

Mπ

mN
− M̄4

π ln
M̄π

M̄N

)

− Z

F 2

(

ΦN (mN ,m∆,M
2
π) − ΦN (M̄N , M̄∆, M̄

2
π)

)

+O(ǫ5) ,

M∆ = M̄∆+ y1(M
2
π−M̄2

π) + y2(M
3
π−M̄3

π) + y3(M
4
π−M̄4

π) + y4

(

M4
π ln

Mπ

mN
− M̄4

π ln
M̄π

M̄N

)

− Z

F 2

(

Φ∆(mN ,m∆,M
2
π) − Φ∆(M̄N , M̄∆, M̄

2
π)

)

+O(ǫ5) , (2.9)

where in the fit we use

mN = M̄N + x1(M
2
π − M̄2

π) + · · · , m∆ = M̄∆ + y1(M
2
π − M̄2

π) + · · · ,

Z = c2A + 2(m∆ −mN )cAb3 +
m2

∆ −m2
N −M2

mN
cAb6

= c2A + 2∆0 cA(b3 + b6) + · · · . (2.10)

– 5 –
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Figure 2. Graphs contributing to the self-energy of ∆ at O(ǫ4) in SSE. For notation, see figure 1.

Here, M2 = 2m̂B and M̄π, M̄N , M̄∆ stand for the physical values of the pion, nucleon and

∆ masses. The ellipses denote the higher-order terms in ǫ. Further, at the order we are

working, one may take ∆0 = M̄∆−M̄N + · · · in the above equations. The masses MN ,M∆

are functions of the pion mass Mπ. The quantities xi, yi, Z denote certain combinations

of LECs. Explicit expressions for the xi, yi, Z, as well as for the functions ΦN ,Φ∆ are

displayed in appendix A. Fitting the nucleon and ∆ masses, given by eq. (2.9), to the

lattice data determines the numerical values of the above combinations of LECs. Note

that some higher-order terms are also present in eq. (2.10), e.g. in the expressions for

Φ∆,ΦN .

The calculation of the quark mass dependence of the nucleon and ∆ masses has been

carried out in different settings [47, 48, 54–56]. Note that, in particular, our result for the

nucleon mass in the infinite volume agrees at O(ǫ3) with the expression given in eq. (17)

of ref. [54]. However, it differs from the O(ǫ4) result for the nucleon and ∆ masses, which

are displayed in eqs. (22) and (30) of ref. [55], respectively. For instance, these latter

expressions do not contain the LECs which describe the quark mass dependence of the

πN∆ vertex (analog of the constants b3, b6).

3 Self-energy of the ∆ resonance in a finite volume: the energy levels

3.1 Calculation of the finite-volume correction

In a finite volume the ∆ propagator develops a tower of poles on the real axis. The location

of these poles determines the finite-volume energy spectrum of the system. Thus, calcu-

lating the propagator in a finite volume, we shall be able to study the volume-dependence

of the energy levels. The procedure is described in detail in ref. [44] and will not be re-

peated here. Here we simply note that the only difference to the infinite-volume case is the

replacement of the (Euclidean) loop integrations by infinite sums

∫

d4kE

(2π)4
(· · · ) 7→

∫

dk4

2π

1

L3

∑

k

(· · · ) , k =
2π

L
n , n ∈ Z

3 . (3.1)

– 6 –
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In the above expression, L denotes the size of the (cubic) box in which the system is placed.

The Lagrangian that produces the loops is the same as in the infinite volume.

The calculations are substantially simplified, if carried out in a large volume where the

exponentially suppressed corrections can be neglected. In this limit the masses of the stable

particles can be considered as volume-independent. However, as it is well known, the energy

levels corresponding to the unstable particles receive corrections, which are suppressed by

powers of L. Only the diagrams, which contain the pion-nucleon intermediate state —

diagrams b,e,f,g in figure 2, calculated in a finite volume — contribute to this power-like

behavior. Retaining the finite-volume parts of these diagrams only, the equation that

determines the location of the poles in the ∆ propagator is written as (cf with Ref [44])

M∆ − E =
Z̃

2EF 2

(

(E +MN )2 −M2
π

) λ(E2,M2
N ,M

2
π)

12E2
W̃N

0 (E2), . (3.2)

Here, E denotes the pole position on the real axis, and Mπ,MN ,M∆ are the masses in the

infinite volume. Further, Z̃ stands for the following combination of the LECs

Z̃ = c2A + 2b3cA(E −MN ) + 2b6cA
E2 −M2

N −M2
π

2MN

= Z + 2(b3 + b6)cA(E −M∆) + O(ǫ2) . (3.3)

It is seen that only three LECs: cA, b3, b6 appear in the finite-volume correction to the

energy of ∆.

Finally, the quantity W̃N
0 (E2) corresponds to the finite-volume part of the πN loop

function

W̃N
0 (E2) = WN

0 (E2) −WN
0 (E2)

∣

∣

∣

∣

L→∞
, (3.4)

where

WN
0 (E2) =

∫

dk4

2π

1

L3

∑

~k

1

(M2
π + k2)(M2

N + (P̂ − k)2)
, P̂µ = (iE,0) . (3.5)

In large volumes, neglecting exponentially suppressed contributions, the loop function

above threshold can be rewritten as

W̃N
0 (E2) =

1

4π3/2 EL
Z̄00(1, q

2) + · · · ,

Z̄00(1, q
2) = Z00(1, q

2) −Z00(1, q
2)

∣

∣

∣

∣

L→∞
, (3.6)

where the ellipses stand for the exponentially suppressed contributions, the quantity q =
L
2π p with p = λ1/2(E2,M2

N ,M
2
π)/2E and Z00 is the zeta-function from ref. [23]

Z00(s, q
2) =

1√
4π

∑

n∈Z3

1

(n2 − q2)s
. (3.7)

Note that Z̄00(1, q
2) = Z00(1, q

2) for q2 > 0.

– 7 –
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Figure 3. Feynman diagram yielding the same scattering phase as eq. (3.9) from an infinite volume

SSE calculation. Solid, dashed and double lines denote nucleons, pions and deltas, respectively.

3.2 Relation to Lüscher’s formula

By using eqs. (3.6) and (3.7) it can be checked that the eq. (3.2) which determines the

position of the pole in the propagator, can be rewritten in the form of Lüscher’s equation

tan δ(p) =
π3/2q

Z00(1, q2)
, (3.8)

where δ(p) denotes the scattering phase shift in the P33-channel for the following choice of

the scattering phase

tan δ(p) =
p3

48πE2
· (E +MN )2 −M2

π

M∆ − E
· Z̃
F 2

, (3.9)

which corresponds to the s-channel tree-level scattering amplitude in the SSE, shown in

figure 3. The discrete solutions of eq. (3.8) determine the energy spectrum of the system

En =
√

M2
N + p2

n +
√

M2
π + p2

n through the given scattering phase δ(p).

3.3 Effect due to the finite lattice spacing

Certain caution is needed, if one uses the above formulae in order to fit the lattice data.

Indeed, they contain artefacts due to the finite lattice spacing a. For example, in the

analysis of the data obtained by using twisted mass fermions, one has to address the issue of

isospin breaking at finite a. Even if the effect turns out to be not very large in the measured

nucleon and delta masses, the neutral pion masses in the loops will differ strongly from the

charged ones. It is clear that, in order to address the problem in its full generality, one has

to develop twisted mass chiral perturbation theory, where the isospin breaking emerges at

a finite lattice spacing. In this paper, however, we shall restrict ourselves to the spectrum

of ∆++,∆−, where only charged pions occur in the loops up-to-and-including order ǫ4.

Consequently, at this order one may use the conventional formalism, with the pion mass

set equal to the charged pion mass and assuming isospin symmetry in the couplings. The

data on ∆+,∆0 will be used for checking the size of isospin-breaking contributions at finite

a and thus will serve as an error estimate only.

– 8 –
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3.4 Determination of the width

The width of the ∆ at the physical value of the quark mass is determined by the parameter

Z which, in turn, at this order depends on the LECs cA, b3, b6, see eq. (2.10)

Γ∆ =
Zq3cm
6πF 2

π

(M̄∆ + M̄N )2 − M̄2
π

4M̄2
∆

. (3.10)

In the above equation, qcm denotes the CM momentum of the πN pair after the decay of

∆, Fπ is the pion decay constant and M̄∆ = 1232 MeV.

A determination of the LECs cA, b3, b6 from the fit to the ∆ mass in the infinite volume

does not provide sufficient accuracy, because these LECs enter starting from the next-to-

leading order. The situation changes, however, if we consider the data obtained at the

same quark mass and at different volumes. Consider, for instance, the data taken at two

different values of L. Since the mass of the ∆ in the infinite volume is, by definition,

volume-independent, the following consistency condition must hold at this order

M∆ = E∆(L1) + δE∆(L1, cA, b3, b6) = E∆(L2) + δE∆(L2, cA, b3, b6) , (3.11)

where E∆(Li), i = 1, 2, denote the measured energies and δE∆(Li, cA, b3, b6) denotes the

finite-volume correction below threshold evaluated at the pertinent values of E and L, see

eq. (3.2). Performing measurements at different values of L provides additional constraints.

Extracting the values of LECs from the above conditions, one may in principle determine

the width of the ∆ by using eq. (3.10). Note that eq. (3.11) holds at a fixed value of the

quark mass.

4 Fit to the lattice data

4.1 Choice of the data

Just in order to demonstrate the application of the theoretical framework developed above,

we shall perform the fit to the recent data of the ETM collaboration [12]. In particular, we

fit the data for the nucleon and ∆ masses, obtained on β = 3.9 lattices of size 243 × 48 and

323 × 64 (smeared link and smeared source), corresponding to L = 2.1 fm and L = 2.7 fm,

respectively. These data are given in table II of ref. [12]. The data contain the nucleon and

∆ masses at 4 different values of the quark mass (on a smaller lattice) and one additional

data point for the lightest quark mass (on a larger lattice). At the lightest quark mass,

the sum of the nucleon and pion masses is smaller that the ∆ mass. Note that we do not

have access to the data at different volumes, extrapolated to the continuum limit a → 0.

The values of the nucleon and ∆ masses, displayed in table II of ref. [12] still contain the

artefacts due to a finite lattice spacing.

4.2 Fit to the nucleon and ∆ masses: infinite volume

In ref. [12] the infinite-volume mass of the ∆ is identified with the extracted energy level at

a largest volume at a given quark mass. As already mentioned, such a procedure can not

be strictly justified for unstable particles. Notwithstanding, we shall use this method in
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the beginning and try to simultaneously fit both nucleon and ∆ masses with the infinite-

volume formulae (2.9). The result is shown in figure 4. For comparison, in the same figure

we display the data points taken on a smaller lattice.

The eqs. (2.9) contain too many free LECs, making the fit to the few available data

points questionable. A reasonable strategy consists in constraining some of these LECs by

using additional physical information. Thus, at this order, the LEC x2 is unambiguously

fixed through the known value of the nucleon axial-vector coupling gA = 1.267. Further-

more, we use the SU(6)-relation g1 = (9/5)gA and set a2,3 = c2,3. The LECs c2,3 are

determined by matching to ChPT without explicit ∆ degree of freedom. The pertinent

relations are given by c2 = c̃2−g2
A/(2∆0)+O(1) and c3 = c̃3 +g2

A/(2∆0)+O(1), where c̃2,3

denote the LECs in ChPT without ∆ (cf with ref. [53]). Using the values c̃2 = 3.3 GeV−1

and c̃3 = −4.7 GeV−1 [52], we finally get c2 ≃ 0.55 GeV−1 and c3 ≃ −1.95 GeV−1. In

addition, we use the value Z = 2.14 that leads to the physical decay width Γ = 118 MeV

after substituting into eq. (3.10). The couplings cA and b3+b6 are given below, see eq. (4.2).

The remaining LECs ĉ1, e1, â1, e
∆
1 are allowed to vary freely (these LECs are defined in

eq. (A.3)). In the fit we will use the data at L = 2.1 fm except the lowest point correspond-

ing to L = 2.7 fm. The fit to the data gives the following values for these parameters3

ĉ1 = −1.6 GeV−1 , â1 = −1.8 GeV−1 ,

e1 = −1.1 GeV−3 , e∆1 = 6.6 GeV−3 . (4.1)

The SU(6) relation â1 ≃ ĉ1 holds approximately, in difference with the result obtained

in ref. [47] (note, however, that the different prescriptions for performing the infrared

regularization in the case of ∆ amount to a finite renormalization of various LECs).

In order to compare the obtained value of ĉ1 with the phenomenological estimates, one

has again to perform the matching to ChPT without an explicit ∆, which yields ĉ1 =

c̃1 + Z∆0/(8π
2F 2) ln(2∆0/m̄N ) + O(∆2

0). In this expression, c̃1 denotes the value of the

pertinent LEC in ChPT. The resulting shift ≃ 0.44 GeV−1 in ĉ1 is positive, and the ob-

tained value of c̃1 reasonably agrees with the value extracted from the phenomenological

analysis of the pion-nucleon scattering at fourth order, see e.g. [57] for the latest update.

Note, however, that the fourth order LECs e1 and e∆1 differ significantly. Moreover, e∆1 is

rather large that could serve an indication of a poor convergence at higher pion masses.

As one observes from figure 4, the finite-size corrections to the ∆ energy may turn

out sizable below threshold (the data point corresponding to the smallest pion mass). At

present, the error bars on the data are large that precludes one to make an unambiguous

statement on the issue. However, even at the present accuracy a hint is seen that the

lowest data point at L = 2.1 fm is located above the curve. This is an example of the

enhancement which was mentioned in the introduction.

3Since part of the data points correspond to rather high values of the quark masses, we prefer to present

here only the central values of the LECs obtained in a result of fitting, and not the errors. The reason

for this is the following. Albeit it is relatively easy to estimate the error in the least squares fit alone,

this estimate will not contain the systematic uncertainty due to the quark mass dependence in the LECs

which emerges from higher orders. To determine the latter in a reliable manner, much more data points at

different (and sufficiently small) quark masses have to be included in the fit.

– 10 –



J
H
E
P
0
6
(
2
0
0
9
)
0
6
1

0 0.1 0.2 0.3 0.4 0.5
Mπ [GeV]

0.8

1

1.2

1.4

1.6

1.8

m
N
, m

∆ [G
eV

]

Figure 4. The fit to the nucleon and ∆++ spectrum by using eq. (2.9). The filled circles correspond

to the data taken at L = 2.1 fm. The data corresponding to L = 2.7 fm at the smallest pion mass

are shown for comparison (triangles). The black diamonds without error bars correspond to the

physical masses.
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Figure 5. The function q2Z̄00(1; q2) in the vicinity of threshold q2 = 0. The threshold cusp is

clearly visible.

4.3 Analytic behavior at threshold

It is quite instructive to study the qualitative behavior of the energy levels in the vicinity

of threshold, i.e. choosing the quark mass so that the sum of the pion and nucleon masses

are only slightly below the ∆ mass. As we know, this situation is realized for the lowest

data point.

Let us consider the plot of the function q2Z̄00(1; q
2), which enters the r.h.s. of eq. (3.2),

see figure 5. This quantity has a cusp, proportional to q3, at threshold q2 = 0. Moreover,

its value in the limit q2 → 0 is different from zero. Below threshold, the function decreases

exponentially. Above threshold, the function has a tower of poles, with the first one located

at q2 = 1.
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L [fm] Mπ MN E∆++,− E∆+,0 δE∆++,− δE∆+,0

2.1 314 ± 2.4 1189 ± 14 1574 ± 29 1609 ± 40 -90 -129

2.7 309 ± 1.9 1177 ± 13 1523 ± 23 1523 ± 34 -39 -43

Table 1. Meson and baryon masses for two different values of the box size L (the data are taken

from table II of ref. [12] (central values only) and correspond to the choice SS of the interpolating

field). Last two columns correspond to the finite-volume corrections to the energy levels, calculated

by using eq. (3.2) (see the text for more detail). All masses are given in MeV.

If one is varying the quark mass so that q2 stays negative (∆ stable), the finite-volume

corrections are exponentially small. However, if decreasing the quark mass, the quantity

q2 moves across the cusp from below, the effect blows up rapidly. In this case, the energy

levels in a finite volume receive large corrections, which should be taken into account. On

the other hand, the “raw” data on the energy levels at a fixed volume, which are depicted,

e.g. in figure 4, are smooth functions of the quark mass and do not exhibit any cusp.

4.4 Subtracting finite-volume effect

In order to subtract finite-volume effect at order ǫ4, one has to fix the values of the LECs

cA and b3 + b6. Since we have only one data point below threshold, both LECs can not be

fixed simultaneously. For this reason, we have set the constant Z = 2.14 so as to reproduce

the width of the ∆ and used the consistency condition (3.11) to determine Z̃ and thus to

disentangle cA and b3 + b6 from eqs. (3.3) and (A.4). Using central values for the energy

levels, we get

c2A = 2.73 , b3 + b6 = −0.6 GeV−1 . (4.2)

As seen, these LECs are indeed of the natural size.

In table 1 we give the results for the finite-volume corrections to the central value of

the lowest data point, evaluated at the above values of the LECs. These finite volume

corrections are indeed small except for the lowest point. The results for ∆+,0 are presented

just for the visualization of the artefacts due to the finite lattice size. As is seen from

this table, the finite-volume corrections matter even at the present accuracy. For instance,

the infinite-volume mass of the ∆++ is equal to 1484 MeV. Here we note that in ref. [58]

significant finite-volume corrections have been found as well. The calculations in ref. [58]

have been carried out at order ǫ3, by using the formula of ref. [44]. At this order, one would

set c2A = Z = 2.14 and b3 + b6 = 0 in our formulae. It can be checked that this does not

change the result significantly.

In figure 6 we show the fit to the lattice data. The finite-volume effect, which is given

in table 1, is subtracted from the lowest data point. It can be seen that the LECs, which

are extracted from the fit, are quite stable (to be compared to eq. (4.1))

ĉ1 = −1.6 GeV−1 , â1 = −1.7 GeV−1 ,

e1 = −1.4 GeV−3 , e∆1 = 6.4 GeV−3 , (4.3)

however, χ2 is somewhat worse in this case.
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Figure 6. The fit to the nucleon and ∆++ spectrum. The lowest data point for ∆ has been purified

with respect to the finite-volume corrections. For comparison, the uncorrected lowest data points

for L = 2.1 fm and L = 2.7 fm (triangles) are shown.

As can be observed from figure 6, the finite-volume correction to the lowest data point

is significant. There is no enhancement in the corrected data.

Finally, just as a hint, we would like to mention that it is possible to get a very good

fit to the data, concentrating only on two lowest quark mass data points and relaxing the

condition g1 = (9/5)gA. The obtained values for the LECs are g1 = 2.89 ≃ 2.3gA, ĉ1 =

−1.43 GeV−1, â1 = −1.67 GeV−1, e1 = −1.35 GeV−3 and e∆1 = 2.02 GeV−3. As can be

seen, e∆1 is now of natural size. The constant ĉ1, contributing to the nucleon σ-term at

lowest order, turns out to be slightly smaller. Still, as one observes, the second-order LECs

ĉ1, â1 are relatively stable that can be interpreted as an indication on the smallness of the

quark mass effects in these LECs. Of course, two data points do not provide sufficient

input to draw definite conclusions about the values of the LECs. For the same reason, we

refrain here from citing the values of the nucleon and delta σ-terms, which can be reliably

determined, only if more data points become available at smaller quark masses.

4.5 Probability distribution: dependence on the quark mass

In this section we shall study the quark (pion) mass dependence of the structure of the

energy levels. To this end, it is useful to invoke the language of the probability distributions,

which makes this dependence very transparent. For a detailed description of the procedure,

see ref. [45].

The probability distribution, which can be unambiguously constructed from the

volume-dependent energy spectrum, is closely related to the so-called density of states

in a finite volume. Using Lüscher’s formula, it can be shown [45] that — to a good approx-
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Figure 7. Subtracted probability distributions for different values of the pion mass. The quantity

p is the relative momentum of the πN pair in the center-of-mass frame. The solid lines correspond

to the theoretical prediction based on Lüscher’s formula, see eq. (4.4).

imation — the probability distribution W (p) can be expressed via the scattering phase

W (p) =
C

p

N
∑

n=1

(

√

4π(πn− δ(p))

p
+

2πδ′(p)
√

4π(πn− δ(p))

)

, (4.4)

where δ(p) denotes the scattering phase, N is the number of energy levels analyzed and

C denotes the normalization constant. Below we restrict ourselves to the analysis of the

lowest state, putting N = 1.

In case of the wide resonance like ∆, it is convenient to consider the so-called sub-

tracted probability distribution, which is obtained from W (p) by subtracting the back-

ground Wfree(p) corresponding to the free πN pairs with δ(p) = 0 [45]. In the vicinity of

the resonance, the subtracted distribution approximately follows the Breit-Wigner form of

the scattering cross section and thus allows one to easily identify the resonance from the

data on the energy spectrum.

Using the values of the various LECs determined from the fit, and substituting the

scattering phase given by eq. (3.9) into eq. (4.4), one may easily predict the shape of

the probability distributions at different values of the pion mass. The results are given in

figure 7. It is seen that the distributions behave in the expected manner: for the higher pion

masses, the center-of-mass momentum decreases and the distribution becomes narrower.

Slightly after 300 MeV the distribution degenerates into the δ-function — the ∆ resonance

becomes stable. Of course, such a behavior can be only observed in practice, provided

there are at least few data points with different values of L at a given quark mass [45].
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5 Conclusions

Here, we summarize the pertinent results of our study:

(i) We have calculated the ground state energy of the ∆ resonance in a finite volume

up-to-and-including O(ǫ4) in the small scale expansion.

(ii) The obtained explicit expressions have been used to analyze the recent data on the

nucleon and ∆ spectrum, provided by the ETM collaboration [12]. It turns out that

the finite volume corrections are sizable using the central value for the data point

with the smallest quark mass. Even at the present accuracy, this correction should

be taken into account.

(iii) It is checked that the numerical values for the correction at O(ǫ3) and at O(ǫ4) do

not differ significantly.

(iv) We perform a simultaneous fit to the nucleon and ∆ masses in the infinite volume.

The values of the LECs obtained in a result of such a fit are reasonable. However,

since only few data points still at relatively high values of quark masses are available

at present, one can not make a statement about the systematic uncertainties in the

LECs due to the remaining higher-order quark mass effects, as well as about the

convergence of chiral expansion at the upper edge of the plot. To this end, a much

larger data sample at small quark masses should be used in the analysis.

(v) The measurement of the energy spectrum at different volumes opens the possibility for

the extraction of the decay width. To this end, we have proposed a procedure based

on the consistency condition eq. (3.11). This procedure can be used meaningfully,

provided more accurate data points emerge below threshold.
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A The masses of the nucleon and the ∆(1232)

The nucleon and ∆ masses at fourth order in SSE are evaluated by using the framework,

which is described in detail in ref. [44]. A straightforward calculation yields

MN = mN − 3g2
AM

3

32πF 2
− 3g2

AM
4

64π2F 2mN

(

2 ln
M

mN
+ 1

)

+
3M4c2

128π2F 2

+
3M4(8c1 − c2 − 4c3)

32π2F 2
ln

M

mN
+

M4

48π2F 2mNm
2
∆

{

P1 + 2P2 ln
M

mN

}

−Z ((m∆ +mN )2 −M2)λ(m2
∆,m

2
N ,M

2)

6mNF 2m2
∆

W r
∆(m2

N )

−Z (m∆ −mN )(m∆ +mN )3

96π2F 2mNm2
∆

{

(m2
∆ −m2

N )2

6m2
N

− 2M2 ln
M

mN

−M
2(2m2

∆ + 2m2
N −m∆mN )

3m2
N

}

+O(ǫ5) , (A.1)

M∆ = m∆ − 5g2
1M

3

96πF 2
− 5g2

1M
4

192π2F 2m∆

(

20

9
ln

M

mN
+

49

54

)

+
3M4a2

128π2F 2

+
3M4(8a1 − a2 − 4a3)

64π2F 2
2 ln

M

mN
+

M4

768π2F 2m5
∆

{

Q1 + 2Q2 ln
M

mN

}

−Z ((m∆ +mN )2 −M2)λ(m2
∆,m

2
N ,M

2)

24m3
∆F

2
W r

N (m2
∆)

−Z (m∆ −mN )(mN +m∆)3

384π2F 2m3
∆

{

(m2
∆ −m2

N )2

3m2
∆

+ 2M2 ln
M

mN

−2M2(2m2
∆ + 2m2

N −m∆mN )

3m2
∆

}

+O(ǫ5) , (A.2)

where M2 = 2Bm̂ and the “tree-level masses” are given by

mN = m̊N − 4c1M
2 − 4B23∆0M

2 −B32∆
3
0 − E1∆

4
0 − 4E2∆

2
0M

2 − 4e1M
4

= ˆ̊mN − 4ĉ1M
2 − 4e1M

4 ,

m∆ = m̊∆ − 4a1M
2 − 4B∆

1 ∆0M
2 −B∆

0 ∆3
0 − E∆

1 ∆4
0 − 4E∆

2 ∆2
0M

2 − 4e∆1 M
4

= ˆ̊m∆ − 4â1M
2 − 4e∆1 M

4 , (A.3)

where e1 = 4e38 + 1
2 (e115 + e116) and e∆1 = 4e∆38 + 1

2 (e∆115 + e∆116). Furthermore,

Z = c2A + 2(m∆ −mN )cAb3 +
m2

∆ −m2
N −M2

mN
cAb6

= c2A + 2∆0cA(b3 + b6) +O(ǫ2) , (A.4)

and

P1 =
mN +m∆

2m2
N

{

c2A
3

(−3m3
∆ − 3m∆m

2
N + 8m3

N ) (A.5)

−(3m4
N + 2m∆(m2

∆ +m2
N )(m∆ −mN ))cA

(

b3 +
mN +m∆

2mN
b6

)}

,
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P2 = c2A(−m2
∆ +m2

N + 3m∆mN )

−(m∆ +mN )(3m2
N + 2m2

∆ − 2m∆mN )cA

(

b3 +
mN +m∆

2mN
b6

)

,

Q1 = c2A(3m4
∆ + 4m4

N + 4m3
Nm∆ + 4m2

Nm
2
∆ + 4mNm

3
∆)

−(mN +m∆)

(

2cAb3 +
(m∆ +mN )cAb6

mN

)

(3m4
∆ + 4mN (m2

N +m2
∆)(mN −m∆)) ,

Q2 = −2m2
∆

{

c2A(2mNm∆ + 3m2
∆ + 2m2

N ) (A.6)

−(mN +m∆)

(

2cAb3 +
(m∆ +mN )cAb6

mN

)

(−2mNm∆ + 3m2
∆ + 2m2

N )

}

.

The loop functions are given by

W r
∆(m2

N ) =



















−
√
−λ

16π2m2
N

arccos

(

−m2
N
−m2

∆
+M2

2mN M

)

− m2
N
−m2

∆
+M2

32π2m2
N

(

2 ln M
mN

− 1

)

, if λ < 0

−
√

λ
32π2m2

N

ln
m2

N
+M2−m2

∆
+
√

λ

m2
N

+M2−m2
∆
−
√

λ
− m2

N
−m2

∆
+M2

32π2m2
N

(

2 ln M
mN

− 1

)

, if λ > 0

,

W r
N (m2

∆) =























−
√
−λ

16π2m2
∆

arccos

(

−m2
∆
−m2

N
+M2

2m∆M

)

− m2
∆
−m2

N
+M2

32π2m2
∆

(

2 ln M
mN

− 1

)

, if λ < 0

−
√

λ
32π2m2

∆

ln
m2

∆
+M2−m2

N
+
√

λ

m2
∆

+M2−m2
N
−
√

λ
− m2

∆
−m2

N
+M2

32π2m2
∆

(

2 ln M
mN

− 1

)

, if λ > 0

,

(A.7)

where λ = λ(m2
∆,m

2
N ,M

2).

We further express the quantity M2 through the pion mass, according to

M2 = M2
π

{

1 +
M2

π

32π2F 2

(

l̄3 + ln
M̄2

π

M2
π

)}

, (A.8)

where l̄3 = 2.9 ± 2.4 is the O(p4) LEC in the meson sector of chiral perturbation theory

and M̄π stands for the physical pion mass.

Finally, normalizing MN and M∆ at Mπ = M̄π and neglecting higher-order terms in

the ǫ-expansion, we obtain the equations (2.9) from section 2, where

x1 = −4ĉ1 ,

y1 = −4â1 ,

x2 = − 3g2
A

32πF 2
,

y2 = − 5g2
1

96πF 2
,
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x3 = −4e1 −
3g2

A

64π2F 2m̄N
+

3c2
128π2F 2

+
1

24π2F 2m̄N

(

c2A
3

− 3

2
cAm̄N (b3 + b6)

)

− c1
8π2F 2

(

l̄3 + ln
M̄2

π

m̄2
N

)

,

y3 = −4e∆1 − 5g2
1

192π2F 2m̄∆
· 49

54
+

3a2

128π2F 2

+
1

768π2F 2m̄∆

(

19c2A − 12cAm̄∆(b3 + b6)

)

− a1

8π2F 2

(

l̄3 + ln
M̄2

π

m̄2
N

)

,

x4 = − 3g2
A

32π2F 2m̄N
+

3(8c1 − c2 − 4c3)

32π2F 2
+

1

8π2F 2m̄N

(

c2A − 2cAm̄N (b3 + b6)

)

+
c1

4π2F 2
,

y4 = − 5g2
1

192π2F 2m̄∆
· 20

9
+

3(8a1 − a2 − 4a3)

32π2F 2

− 1

192π2F 2m̄∆

(

7c2A − 12cAm̄∆(b3 + b6)

)

+
a1

4π2F 2
, (A.9)

and the “tree-level” masses mN ,m∆ are given by eq. (2.10).

Finally, the loop functions in eq. (2.9) are defined as

ΦN (mN ,m∆,M
2
π) =

((m∆ +mN )2 −M2
π)λ(m2

∆,m
2
N ,M

2
π)

6mNm2
∆

W r
∆(m2

N )

+
(m∆ −mN )(m∆ +mN )3

96π2mNm2
∆

{

(m2
∆ −m2

N )2

6m2
N

−M
2
π(2m2

∆ + 2m2
N −m∆mN )

3m2
N

− 2M2
π ln

Mπ

mN

}

,

Φ∆(mN ,m∆,M
2
π) =

((m∆ +mN )2 −M2
π)λ(m2

∆,m
2
N ,M

2
π)

24m3
∆

W r
N (m2

∆) (A.10)

+
(m∆ −mN )(mN +m∆)3

384π2m3
∆

{

(m2
∆ −m2

N )2

3m2
∆

−2M2
π(2m2

∆ + 2m2
N −m∆mN )

3m2
∆

+ 2M2
π ln

Mπ

mN

}
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Bern-Graz-Regensburg collaboration, D. Brömmel et al., Excited nucleons with chirally

improved fermions, Phys. Rev. D 69 (2004) 094513 [hep-ph/0307073] [SPIRES].

– 18 –

http://arxiv.org/abs/hep-lat/0112031
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/0112031
http://dx.doi.org/10.1016/S0920-5632(03)01539-1
http://arxiv.org/abs/hep-lat/0209165
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/0209165
http://dx.doi.org/10.1016/j.nuclphysb.2003.10.044
http://arxiv.org/abs/hep-lat/0307013
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/0307013
http://dx.doi.org/10.1103/PhysRevD.69.094513
http://arxiv.org/abs/hep-ph/0307073
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0307073


J
H
E
P
0
6
(
2
0
0
9
)
0
6
1

[4] S. Sasaki, T. Blum and S. Ohta, A lattice study of the nucleon excited states with domain

wall fermions, Phys. Rev. D 65 (2002) 074503 [hep-lat/0102010] [SPIRES];

S. Sasaki, Latest results from lattice QCD for the Roper resonance, Prog. Theor. Phys.

Suppl. 151 (2003) 143 [nucl-th/0305014] [SPIRES];

K. Sasaki and S. Sasaki, Excited baryon spectroscopy from lattice QCD: finite size effect and

hyperfine mass splitting, Phys. Rev. D 72 (2005) 034502 [hep-lat/0503026] [SPIRES];

K. Sasaki, S. Sasaki and T. Hatsuda, Spectral analysis of excited nucleons in lattice QCD

with maximum entropy method, Phys. Lett. B 623 (2005) 208 [hep-lat/0504020] [SPIRES].

[5] CSSM Lattice collaboration, J.M. Zanotti et al., Hadron masses from novel fat-link

fermion actions, Phys. Rev. D 65 (2002) 074507 [hep-lat/0110216] [SPIRES]; Spin-3/2

nucleon and delta baryons in lattice QCD, Phys. Rev. D 68 (2003) 054506

[hep-lat/0304001] [SPIRES].

[6] B.G. Lasscock et al., Even parity excitations of the nucleon in lattice QCD,

Phys. Rev. D 76 (2007) 054510 [arXiv:0705.0861] [SPIRES].

[7] W. Melnitchouk et al., Excited baryons in lattice QCD, Phys. Rev. D 67 (2003) 114506

[hep-lat/0202022] [SPIRES].

[8] L. Zhou and F.X. Lee, Spin-3/2 baryons from an anisotropic lattice QCD action,

Phys. Rev. D 74 (2006) 034507 [hep-lat/0604023] [SPIRES].

[9] N. Mathur et al., Roper resonance and S(11)(1535) from lattice QCD,

Phys. Lett. B 605 (2005) 137 [hep-ph/0306199] [SPIRES].

[10] D. Guadagnoli, M. Papinutto and S. Simula, Extracting excited states from lattice QCD: the

Roper resonance, Phys. Lett. B 604 (2004) 74 [hep-lat/0409011] [SPIRES].

[11] ETM collaboration, C. Alexandrou et al., Baryon masses with dynamical twisted mass

fermions, PoS(LATTICE 2007)087 [arXiv:0710.1173] [SPIRES].

[12] European Twisted Mass collaboration, C. Alexandrou et al., Light baryon masses with

dynamical twisted mass fermions, Phys. Rev. D 78 (2008) 014509 [arXiv:0803.3190]

[SPIRES].

[13] C. McNeile, Meson and baryon spectroscopy on a lattice, hep-lat/0307027 [SPIRES].

[14] D.B. Leinweber, W. Melnitchouk, D.G. Richards, A.G. Williams and J.M. Zanotti, Baryon

spectroscopy in lattice QCD, Lect. Notes Phys. 663 (2005) 71 [nucl-th/0406032] [SPIRES].

[15] C. Gattringer, Excited hadrons on the lattice — State of the art and future challenges,

arXiv:0711.0622 [SPIRES].

[16] C. Alexandrou et al., Delta-baryon electromagnetic form factors in lattice QCD,

Phys. Rev. D 79 (2009) 014507 [arXiv:0810.3976] [SPIRES].

[17] N. Mathur et al., Cascade baryon spectrum from lattice QCD, arXiv:0811.1400 [SPIRES].

[18] C. Morningstar, Exploring excited hadrons, arXiv:0810.4448 [SPIRES].
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